HARMONIC INDEX AND RANDI\'{C} INDEX OF GENERALIZED TRANSFORMATION GRAPHS

H. S. RAMANE, B. BASAVANAGOUD, R. B. JUMMANNAVER

Abstract


The harmonic index of a graph $G$ is defined as the sum of weights $\frac{2}{d_G(u)+d_G(v)}$ of all edges $uv$ of $G$ and the Randi\'{c} index of a graph $G$ is defined as the sum of weights $\frac{1}{\sqrt{d_G(u)d_G(v)}}$ of all edges $uv$ of $G$, where $d_G(u)$ is the degree of a vertex $u$ in $G$. In this paper, the expressions for the harmonic index and Randi\'{c} index of the generalized transformation graphs $G^{xy}$ and for their complement graphs are obtained in terms of the parameters of underline graphs.

Full Text:

PDF

References


bibitem[1]{Bas} B. Basavanagoud, I. Gutman, V. R. Desai, {it Zagreb indices of generalized transformation graphs and their complements}, Kragujevac J. Sci. {bf 37} 99--112, 2015.

bibitem[2]{Cha} R. Chang, Y. Zhu, {it On the harmonic index and the minimum degree of a graph}, Romanian J. Inf. Sci. Tech. {bf 15} 335--343, 2012.

bibitem[3]{Den} H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, {it On the harmonic index and the chromatic number of a graph}, Discrete Appl. Math. {bf 161} 2740--2744, 2013.

bibitem[4]{Faj} S. Fajtlowicz, {it On conjectures of Graffiti - II}, Congr. Numer. {bf 60} 187--197, 1987.

bibitem[5]{Fav} O. Favaron, M. Mahe'{o}, J. F. Sacl'{e}, {it Some eigenvalue properties in graphs (conjectures of Graffiti - II)}, Discrete Math. {bf 111} 197--220, 1993.

bibitem[6]{Gar} R. Garc'{i}a-Domenech, J. G'{a}lvez, J. V. de Juli'{a}n-Ortiz, L. Pogliani, {it Some new trends in chemical graph theory}, Chem. Rev. {bf 105} 1127--1169, 2008.

bibitem[7]{Gut} I. Gutman, B. Furtula (Eds.), {it Recent Results in the Theory of Randi'{c} Index}, Uni. Kragujevac, Kragujevac, 2008.

bibitem[8]{Hu} Y. Hu, X. Zhou, {it On the harmonic index of the unicyclic and bicyclic graphs}, Wseas Tran. Math. {bf 12} 716--726, 2013.

bibitem[9]{Ili} A. Ili'{c}, {it Note on the harmonic index of a graph}, arXiv:1204.3313, 2012.

bibitem[10]{Kie1} L. B. Kier, L. H. Hall, {it Molecular Connectivity in Chemistry and Drug Research}, Academic Press, New York, 1976.

bibitem[11]{Kie2} L. B. Kier, L. H. Hall, {it Molecular Connectivity in Structure Activity Analysis}, Wiley, New York, 1986.

bibitem[12]{LiShi} X. Li, Y. Shi, {it A survey on the Randi'{c} index}, MATCH Commun. Math. Comput. Chem. {bf 59} 127--156, 2008.

bibitem[13]{LiShiu} J. Li, W. C. Shiu, {it The harmonic index of a graph}, Rocky Mountain J. Math. {bf 44} 1607--1620, 2014.

bibitem[14]{Liu1} J. Liu, {it On the harmonic index of triangle free graphs}, Appl. Math. {bf 4} 1204--1206, 2013.

bibitem[15]{Liu2} J. Liu, {it On the harmonic index and diameter of graphs}, J. Appl. Math. Phy. {bf 1} 5--6, 2013.

bibitem[16]{Liu3} S. Liu, J. Li, {it Some properties on the harmonic index of molecular trees}, ISRN Appl. Math. 2014 ID: 781648 8 pages, http://dx.doi.org/10.1155/2014/781648.

bibitem[17]{Lv1} J. Lv, J. Li, {it On the harmonic index and the matching number of a tree}, Ars Combin. {bf 116} 407--416, 2014.

bibitem[18]{Lv2} J. Lv, J. Li, W. C. Shiu, {it The harmonic index of unicyclic graphs with given matching number}, Kragujevac J. Math. {bf 38} 173--183, 2014.

bibitem[19]{Pog} L. Pogliani, {it From molecular connectivity indices to semiemperical connectivity terms: recent trends in graph theoretical descriptors}, Chem. Rev. {bf 100} 3827--3858, 2000.

bibitem[20]{Ran} M. Randi'{c}, {it On characterization of molecular branching}, J. Am. Chem. Soc. {bf 97} 6609--6615, 1975.

bibitem[21]{Sam} E. Sampathkumar, S. B. Chikkodimath, {it Semitotal graphs of a graph - I}, J. Karnatak Univ. Sci. {bf 18} 274-280, 1973.

bibitem[22]{She} B. Shwetha Shetty, V. Lokesha, P. S. Ranjini, {it On the harmonic index of graph operations}, Trans. Combin. {bf 4} 5--14, 2015.

bibitem[23]{Wu} R. Wu, Z. Tang, H. Deng, {it A lower bound for the harmonic index of a graph with minimum degree atleast two}, Filomat {bf 27} 51--55, 2013.

bibitem[24]{Yan} L. Yang, H. Hua, {it The harmonic index of general graphs, nanocones and triangular benzenoid graphs}, Optoelectronics Adv. Materials - Rapid Commun. {bf 6} 660--663, 2012.

bibitem[25]{Zho1} L. Zhong, {it The harmonic index of graphs}, Appl. Math. Lett. {bf 25} 561--566, 2012.

bibitem[26]{Zho2} L. Zhong, {it The harmonic index on unicyclic graphs}, Ars Combin. {bf 104} 261--269, 2012.

bibitem[27]{Zho3} L. Zhong, K. Xu, {it The harmonic index for bicyclic graphs}, Utilitas Math. {bf 90} 23--32, 2013.

bibitem[28]{Zhu} Y. Zhu, R. Chang, {it On the harmonic index of bicyclic conjugated molecular graphs}, Filomat {bf 28} 421--428, 2014.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Journal of the Nigerian Mathematical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.