In this paper, certain class of second-order vector delay differential equation of the form

$$\ddot{X} + A \dot{X} + H(X(t -r(t))) = P(t,X,\dot{X})$$

is considered where $ X \in \mathbb{R}^n$, $0 \leq r(t) \leq \gamma $ and $A$ is a real constant, symmetric positive definite $n \times n$ matrix. By using the second method of Lyapunov and Lyapunov-Krasovskii's funtion we established sufficient conditions for the asymptotic stability of the zero solution when $P(t, X, \dot{X}) = 0$ and boundedness of all solutions when $P(t, X, \dot{X}) \neq 0$. The results obtained here are generalizations of some of the results obtained for $\mathbb{R}^1.$

Full Text:



bibitem[1]{journ2.1}B.S. Ogundare and A.U. Afuwape, textit{Boundedness and stability properties of solutions of generalized Lienard equation,} Kochi J. Math. textbf{9} 97-108, 2014.

bibitem[2]{journ2.2}A.T. Ademola, textit{Boundedness and stability of solutions to certain second order differential equations,} Differential Equations and Control Processes N3, Volume 2015.

bibitem[3]{journ2.3}A.T. Ademola, P.O. Arawomo and A.S. Idowu, textit{Stability, Boundedness and Periodic Solutions to Certain Second Order Delay Differential Equations,} Proyecciones Journal of Mathematics, Universidad Catolica del Norte Antofagasta - Chile textbf{36} (2) 257-282, June 2017.

bibitem[4]{journ2.4}T. Wiandt, textit{On the Boundedness of Solutions of the Vector Lienard Equation,} Dynam. Systems Appl. textbf{7} (1) 141-143, 1998.

bibitem[5]{journ2.5}C. Tunc, textit{A new boundedness theorem for a class of second order differential equations,} The Arabian Journal for Science and Engineering textbf{33} (1A) 83 - 92, 2008.

bibitem[6]{journ2.6}A.U. Afuwape and M.O. Omeike,textit{On the stability and boundedness of solutions of a kind of third order delay differential equations }, Applied Mathematics and computation, textbf{200} 444-451, 2008.

bibitem[7]{journ2.7}M.O. Omeike, textit{Stability and Boundedness of Solutions of a Certain System of third-Order Nonlinear Delay Differential Equations,} Acta Univ. Palacki. Olumuc., Fac. rer. nat., Mathematica textbf{54} 109-119, 2015.

bibitem[8]{journ2.8}A.I. Sadek, textit{ Stability and boundedness of a Kind of third-order delay differential system,}, Applied Mathematics letters textbf{16} 657-662, 2003.

bibitem[9]{journ2.9}C. Tunc, textit{On the stability and boundedness of solutions of nonlinear vector differential equations of third order,} Nonlinear Analysis textbf{70} 2232-2236, 2009.

bibitem[10]{journ2.10}Y.Zhu, textit{On the stability, boundedness and existence of periodic solution of a kind of third-order nonlinear delay differential system,} Ann. of Diff. Eqs. textbf{8} (2) 249-259, 1992.

bibitem[11]{journ2.11}A.U. Afuwape, textit{Ultimate boundedness results for a

certain system of third-order nonlinear differential equations},

J. Math. Anal. Appl. textbf{97} 140-150, 1983.

bibitem[12]{journ2.12}A.U. Afuwape and M.O. Omeike,textit{Further ultimate boundedness of solutions of some system of third order nonlinear ordinary differential equations}, Acta Univ. Palacki. Olumuc., Fac. rer. nat., Mathematica textbf{43} 7-20, 2004.

bibitem[13]{journ2.13}J.O.C. Ezeilo,textit{ An elementary proof of a boundedness theorems for a certain third order differential equation},J. Lond. Math. Soc. textbf{38} 11-16, 1963.

bibitem[14]{journ2.14}J.O.C. Ezeilo,textit{Stability results for the solutions of some third and fourth order differential equations}, Ann. Mat. Pura Appl. textbf{66}, 233-249, 1964.

bibitem[15]{journ2.15}J.O.C. Ezeilo and H.O.Tejumola, textit{Boundedness and periodicity of solutions of a certain system of third-order non-linear differential equations}, Ann. Mat. Pura Appl. textbf{66} 283-316, 1964.

bibitem[16]{journ2.16}T.A. Burton,textit{Stability and Periodic Solutions of Ordinary and Functional Differential Equations}, Academic Press, 1985.

bibitem[17]{journ2.17}T.A. Burton and S. Zhang,textit{Unified boundedness, periodicity and stability in ordinary and functional differential equations}, Ann. Math. Pura Appl. textbf{145} 129-158, 1986.

bibitem[18]{journ2.18}A.I. Sadek, textit{On the stability of solutions of certain fourth order delay differential equations,} Applied Mathematics and Computations textbf{148} 587-597, 2004.


  • There are currently no refbacks.

Copyright (c) 2018 Journal of the Nigerian Mathematical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.