### AN EFFICIENT FAMILY OF SECOND DERIVATIVE RUNGE-KUTTA COLLOCATION METHODS FOR OSCILLATORY SYSTEMS

#### Abstract

Runge-Kutta collocation methods is derived for the numerical

solution of oscillatory systems.

The approach uses polynomial interpolation and collocation techniques to construct continuous schemes which were evaluated at both step and off-step points to obtain hybrid formulae.

The hybrid formulae can be applied simultaneously as block methods for moving the integration process forward at a time, if desired.

The block methods based on hybrid formulation can also be converted to second derivative Runge-Kutta collocation methods.

The stability properties and order of accuracy of the methods are

studied. They can also be implemented easily since they are

collocation methods and provide a high order of accuracy. The

methods were illustrated by the applications to some test problems

of oscillatory system found in the literature and the numerical

results obtained confirm the accuracy and efficiency of the methods.

#### Full Text:

PDF#### References

bibitem[1]{journ2.1}K.Burrage, J.C.Butcher, {it Nonlinear stability for a general class of differential equation

methods}, BIT Numer. Math. textbf{20} 185 -203, 1979.

bibitem[2]{journ2.2}S.O. Fatunla, {it Numerical integrators for stiff and highly oscillatory

differential equations}, J. Math. Comp textbf{34} (150) 373-390,

bibitem[3]{journ2.3}L.R. Petzold, L.O. Jay, J.Yen, {it Numerical solution of highly oscillatory ordinary differential

equations}, Acta Numerica. textbf{6} 437-483, 1997.

bibitem[4]{journ2.4}F. Costabile, A. Napoli, {it Stability of Chebychev collocation methods}, Comput. Math. Appl.

textbf{47} , 659-666, 2004.

bibitem[5]{journ2.5}F. Costabile, A. Napoli, {it A class of collocation methods for numerical integration of

initial value problems}, Comput. Math. Appl. textbf{62} 3221-3235,

bibitem[6]{journ2.6}M. Urabe, {it An implicit one-step method of high-order accuracy for the

numerical integration of ordinary differential equations}, J. Numer.

Math. textbf{15} 151 - 164, 1970.

bibitem[7]{journ2.7}H. Shantani, {it On one-step methods utilizing the second derivative}, Hiroshima Math

textbf{1} 349 - 372, 1971.

bibitem[8]{journ2.8}H. Shantani,, {it On explicit one-step methods utilizing the second

derivative}, Hiroshima Math. textbf{2} 353 - 368, 1972.

bibitem[9]{journ2.9}J.R.Cash, {it High order methods for numerical integration of ordinary

differential equations}, Numer. Math. textbf{30} 385 - 409, 1978.

bibitem[10]{journ2.10}T. Mitsui, {it Runge-Kutta type integration formulas including the evaluation of

the second derivative Part I}, Publ. RIMS Kyoto University ,Japan

textbf{18} 325 - 364, 1982.

bibitem[11]{journ2.11}S.D. Capper, J.R. Cash, D. R. Moore, {it Lobatto-Obrechkoff formulae for 2nd , order two-points boundary

value problems}, J. Numer. Anal. Indus. and Appl. Math. JNAIAM

textbf{314} 13 - 25, 2006.

bibitem[12]{journ2.12}R.P.K. Chan, A.Y.J. Tsai, {it On explicit two-derivative Runge-Kutta methods}, J. Numer. Algor.

textbf{53} 171 - 194, 2010.

bibitem[13]{journ2.13}D.G. Yakubu, S. Markus, {it Second derivative of high order accuracy methods for the numerical

integration of stiff initial value problems}, Afrika Math.

textbf{27} (5-61) 963-977, 2016.

bibitem[14]{journ2.14}J.C. Butcher, {it Numerical Methods for Ordinary Differential Equations}, 2nd edn. Wiley Chichester, 2008.

bibitem[15]{journ2.15}T.Mitsui, D.G. Yakubu, {it Two-step family of look-ahead linear multistep methods for ODEs}, The science and engineering review Doshisha University Japan

textbf{52} (3) 181-188, 2011.

bibitem[16]{journ2.16}P. Onumanyi, D.O. Awoyemi, S.N. Jator, U.W. Sirisena {it New linear multistep methods with continuous coefficients for

first order initial value problems}, J. Nig. Math. Soci. textbf{13}

-51, 1994.

bibitem[17]{journ2.17}I. Lie, S. P. N{o}rsett, {it Superconvergence for multistep

collocation}, Math. Comp. textbf{52} 65-80, 1989.

bibitem[18]{journ2.18}D.G. Yakubu, M. Aminu, A. Aminu, {it The numerical integration of stiff systems using stable

multi-step multi-derivative methods}, J. Mod. Meth. Numer. Math.,

textbf{8} (1-2) 99-117, 2017.

bibitem[19]{journ2.19}J. Vigo-Aguiar, H. Ramos, {it A family of A-stable Runge-Kutta collocation methods of high

order for initial value problems}, IMA J. Numer. Anal. textbf{27}

(4) 798-817, 2007.

bibitem[20]{journ2.20}J. D. Lambert, {it Computational Methods in Ordinary Differential Equations}, John Wiley and Sons Ltd, 1973.

bibitem[21]{journ2.21}G. Dahlquist, {it 'A special stability problem for linear multistep

methods'}, BIT J. Numer. Math. textbf{3} 27-43, 1963.

bibitem[22]{journ2.22}H. Ramos, V. Jesus, {it A fourth-order Runge-Kutta method based on

BDF-type Chebychev approximations}, J. Comp. Appl. Math.

textbf{204} 124-136, 2007.

bibitem[23]{journ2.23}J. D. Lambert, {it Numerical Methods for Ordinary Differential Systems}, John Wiley and Sons, Ltd, 1991.

bibitem[24]{journ2.24}W. C. Gear, {it DIFSUB for solution of ordinary differential equations}, Comm ACM.

textbf{14} 185-190, 1971.

bibitem[25]{journ2.25}E. Sch$ddot{a}$fer, Br. Freiburi, {it A new approach to explain the

"High Irradiance Responses" of photomorphoenesis on the basis of

phytochrome}, J. Math. Bio. textbf{2} 41-56, 1975.

### Refbacks

- There are currently no refbacks.

Copyright (c) 2018 Journal of the Nigerian Mathematical Society

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.