On Lie SL(n;R)-Foliation

A. Ndiaye

Abstract


In this paper, we show that any compact manifold that carries a SL(n;R)-foliation is fibered on the circle S1. Every manifold in this paper is compact and our Lie group G is connected and simply connected.


Full Text:

PDF

References


H. Dathe, Sur l’existence des feuilletages de Lie, Afrika Mat. 11 (2000), (3), 15-20.

A.S. Diallo, A. Ndiaye On Completely Solvable Lie Foliation, Glob. J. Adv. Res. Class. Mod. Geom.,7 (2018), (2), 102-106.

A. El Kacimi Alaoui, G. Guasp, M. Nicolau, On deformations of transversely homogeneous foliations, Topology 40 (2001), 1363-1393.

C. Ehresmann, Structures feuilletées, Proc. Fifth Canad. Math. Congress. - Montreal. (1961), 109-172.

E. Fedida, Sur les feuilletages de Lie, C. R. Acad. Sci. Paris 272 (1971) 999-1001.

E. Fedida, Feuilletages du plan, feuilletage de Lie, thése université Louis Pasteur, Strasbourg (1973).

A. Haefliger, Structures feuilletées et cohomologie à valeurs dans un faisceau de groupoides, Comment. Math. Helv. 32. (1958), 249-329.

R. Hermann, The differential geometry of foliations I, Ann. Math., 72, (1960), 445-457.

P. Molino, Géométrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Indag. Math., 44 (1982), (1), 45-76.

P. Molino, Riemannian Foliations. Progress in Mathematics, 73. Birkhauser, 1988.

G. Reeb, Sur les structures feuilletées de codimension 1 et sur un théorème de M. A. Denjoy, Ann. Inst. Fourier, (1961), 185-200.

D. Tischler, On fibering certain manifold over the circle, Topology 9 (1970), 153-154.

Ph. Tondeur, Geometry of foliations. Monographs in Mathematics, Vol. 90, Birkhaeuser - Verlag, Basel, 1997.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Journal of the Nigerian Mathematical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.