Variant of finite symmetric inverse semigroup

M. Balarabe, G. U. Garba, A. T. Imam

Abstract


In a semigroup $S$ fixed an element $a\in S$ and, for all $x,y\in S$, define a binary operation $*_{a}$ on $S$ by $x*_{a}y=xay$, (where the juxterposition on the left denote the original semigroup operation on $S$). The operation $*_{a}$ is clearly associative and so $S$ forms a new semigroup under this operation, which is denoted by $S^{a}$ and called {\emph{variant}} of $S$ by $a$. For a finite set $X_{n} = \{1, 2,\ldots, n\}$, let $\mathcal{I}_{n}$ be the symmetric inverse semigroup on $X_{n}$ and fix an idempotent $a\in \mathcal{I}_{n}$. In this paper, we study the variant $\mathcal{I}^a_{n}$ of $\mathcal{I}_{n}$ by $a$. In particular, we characterised Green's relations and starred Green's relations $\mathcal{L}^{*}$, $\mathcal{R}^{*}$ in $\mathcal{I}^a_{n}$ and also showed that the variant semigroup $\mathcal{I}^a_{n}$ is abundant.

Full Text:

PDF

References


W. P. Brown, Generalized matrix algebra, Canad. J. Math. 7 188-190, 1955

J.B. Fountain, Adequate semigroups, Proc. Edinburgh Math. Soc. 22 113-125, 1979.

J. B. Fountain, Abundant semigroups, Proc. London Math. Soc. 44 103-129, 1982.

J. A. Green, On the structure of semigroups, Semigroup forum, 54 163-172, 1951.

J. B. Hickey, Semigroups under a sandwich operation, Proc. Edinburgh Math. Soc. 26(3) 371-382, 1983.

P. Huisheng, S. Lei and Z. Hongcun, Green's relations for the variants of transformation semigroups preserving an equivalence relations, Communication in Algebra 35 1971-1986, 2007.

J. M. Howie, Fundamentals of semigroup theory, London Mathematical Society, New Series 12 (The Clarendon Press, Oxford University Press, 1995).

D. Igor and J. East, Variants of nite full transformation semigroups, International Journal of Algebra and Computation 25 1187-1222, 2015.

C. Karen, Sandwich semigroups of binary operation, Discrete Math. 28(3) 231-236, 1979.

G. M. Kuddryavtseva and G. Y. Tsyaputa, The automorphism group of the sandwich inverse symmetric inverse semigroup, Bulletin of the university of Kiev, series: Mechanics and Mathematics ; 13 101-105, 2005.

E. S. Lyapin, Semigroups in Russian, Gosudarstv. Izdat. Fiz. Mat. Lit. Moscow. 1960

K. D. Magill, Semigroup structures for families of functions. I. Some homomorphism theorems, J. Austral. Math. Soc. 7 81-94, 1967.

K. D. Magill, Jr. and S. Subbiah, Green's relations for regular elements of sandwich semigroups I. General results, Proc. London Math. Soc. 31 194-210, 1975.

K. D. Magill, Jr. and S. Subbiah, Green's relations for regular elements of sandwich semigroups II. Semigroup of continues functions, J. Austral. Math. Soc. Ser. A., 25 45-65, 1978.

H. Pei and H. Zhou, Abundant semigroups of transformations preserving an equivalence relation, Algebra Colloq. 18 77-82, 2011.

L. Sun, A note on abundance of certain semigroups of transformations with restricted range, Semigroup Forum 87 681-684, 2013.

L. Sun and L. Wang, Abundance of the semigroup of all transformations of a set that reflect an equivalence relation, J. Algebra Appl. 13 135-144, 2014.

L. Sun and X. Han, Abundance of E-order-preserving transformation semigroups, Turk. J. Math. 40 32-37, 2016.

G. Y. Tsyaputa, Green's relation on the deform transformation semigroups, Algebra Descrete Math. 1 121-131, 2004.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Journal of the Nigerian Mathematical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.