The fuzzy subgroups for the Abelian structure Z_8 X Z_(2^n ), n>2,n>2; n > 2

S. A. Adebisi, M. Ogiugo, M. Enioluwafe

Abstract


Any nite nilpotent group can be uniquely written as a direct product of p-groups. In this paper, we give explicit formulae for the number of distinct fuzzy subgroups of the cartesian product of two abelian groups of orders 2^n and 8 respectively for every integer n > 2.

.


Full Text:

PDF

References


Adebisi S.A. , M. Ogiugo and M. EniOluwafe (2020) Computing the Number of Distinct Fuzzy Subgroups for the Nilpotent p-Group of D2n X C4 International J. Math. Combin. Vol.1 (2020), 86-89.

Mashinchi M. , Mukaidono M.(1992). A classication of fuzzy subgroups. Ninth Fuzzy System Symposium, Sapporo, Japan, 649-652.

Tarnauceanu, Marius. (2009). The number of fuzzy subgroups of finite cyclic groups and Delannoy numbers, European J. Combin. (30), 283-289, doi: 10.1016/ j.ejc.2007.12.005.

Tarnauceanu Marius. (2011). Classifying fuzzy subgroups for a class of finite p-groups. ALL CUZa" Univ. Iasi, Romania.

Tarnauceanu, Marius. (2012). Classifying fuzzy subgroups of finite nonabelian groups. Iran.J.Fussy Systems. (9) 33-43.

Tarnauceanu, Marius. , Bentea, L. (2008). A note on the number of fuzzy sub-groups of finite groups, Sci. An. Univ. "ALL.Cuza" Iasi, Matt., (54) 209-220.

Tarnauceanu, Marius. , Bentea, L. (2008). On the number of fuzzy subgroups of finite abelian groups, Fuzzy Sets and Systems (159), 1084-1096, doi:10.1016/j.fss.2017.11.014


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Journal of the Nigerian Mathematical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.