APPLICATION OF THE BRIOT-BOUQUET DIFFERENTIAL EQUATION TO A CLASS OF ANALYTIC FUNCTIONS

F. M. JIMOH, K. O. BABALOLA

Abstract


In this paper, using the technique of the Briot-Bouquet differential subordination, we find the real number ρ such that Re [Dnf(z)nnzα] > ρ implies univalence of certain analytic functions.


Full Text:

PDF

References


M. Abramowitz and I. Stegun, Handbook of Mathematical formulas, Graph and Mathematical Tables. Dover Publications, New York. 1971.

Babalola, K. O., Opoola T. O. A sharp inclusion theorem for certain class of Analytic function dened by Salagean derivaties. International Journal of Mathematics and Computer Science, 2(4), 371-375, 2007.

Babalola, K. O. and Opoola, T. O. Radius problems for certain classes of analytic functions involving Salagean derivative. Advances in Inequalities for Series, 15-21, 2008.

Eenigenburg, P., Miller, S. S., Mocanu, P. T., Reade, M. O. On Briot- Bouquet Differential subordinations. Rev. Roumanie Math. Pures Appl., 29, 567-573, 1984.

Jimoh, F. M. and Babalola, K. O. Functions dened by products of geometric expressions. Nigerian Journal of Mathematics and Applications, 24, 176-183, 2015.

Miller, S. S. and Mocanu, P. T. Differential subordinations and univalent func- tions. Michigan Math. J., 28, 157-171, 1981.

Miller, S. S. and Mocanu, P. T. On some classes of first-order differential subordinations. Michigan Math. J., 32, 185-195, 1985.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Journal of the Nigerian Mathematical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.