LEGENDRE COLLOCATION METHOD FOR LINEAR SECOND ORDER FREDHOLM VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

M. R. ODEKUNLE, A. O. ADESANYA, R. O. ONSACHI, A. M. AJILEYE

Abstract


This paper discusses the development of a new numerical solution of second order linear Fredholm Volterra integro-dffierential equations by Legendre collocation method. The Fredholm Volterra integro-differential equation is rst converted into integral equation and then transformed into linear algebraic equations which are then solved using matrix inversion
method. Numerical solution shows that the method gives better accuracy than the existing methods.

Full Text:

PDF

References


A. Alipanah and M. Dehghan, A pseudospectral method for the solution of second order integro differential equations, J. Vib. Control, 1- 6, 2011, doi:10.1177/1077546311399945.

O. A. Agbolade and T. A. Anake, Solution of rst order Volterra type lineardierential equations by collocation method, J. Appl. Math., Article ID 1510267, (2017), doi: 10.1155/2017/1510267.

T. Akkaya and S. Yalcinbas, Boubaker polynomial approach for solving high order differential difference equations, AIP Conf. Proc., 1493, 26, (2012), doi:10.1063/1.4765464.

N. Akgonullu , N. Sahin and M. Sezer, A Hermite collocation method for the approximate solution of high order linear Fredholm integro differential equations, Numer. Methods Partial Dierential Equations, doi:10.1002/num.20604.

H. Derdik-Yaslan and A. Akyuz-Dascioglu, Chebyshev polynomial solution of non-linear Fredholm Volterra integro differential equations, Cankaya University, Fen-Edebiyat Fakultesi Journal of Arts and Sciences Sayi: 5, Mayis, (2006).

E. H. Doha, M. A. Abdelkawy and A. Z. M. Amin, Shifted Jacobi spectral collocation method with convergence analysis for solving integro differential equations, Nonlinear Anal. Model. Control, 24(3), (2019) 332-352, doi:10.15388/NA.2019.3.2


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Journal of the Nigerian Mathematical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.