THE COMPLETE THEORY OF MATHEMATICS

S. O. $BOSS^1$ AND T. K. $POSTDOC^2$

ABSTRACT. This study focuses on the functional framework $x(z) = \lambda z^{\mu}$ for a non-linear PDE arising from a fluid in a sphere.

Keywords and phrases: Third grade fluid, PDE, Sphere 2010 Mathematical Subject Classification: A80

1. INTRODUCTION

During the past few decades, research in flows involving heat transfer of non-Newtonian fluids has been intensified.

2. PRELIMINARY

We define some basic results from Kim [1] for the benefit of all. **Definition 1:** A solution $u \in \Omega$ is called a α -weak solution of the boundary value problem ...

3. THE HEART OF THE MATTER

The heart of the matter is to state without proof the following: Lemma 1: (A Sobolev's embedding) Let $u \in \Omega$. Then we have the estimate

$$\int r^m u'v'dr + (a-m)\int r^{m-1}u'vdr = \int r^m [h-g(u)]vdr, \quad (1)$$

Next we proof the main theorem:

Theorem 1: (A priori estimates). Let u be a solution of \ldots **Proof:** We split the proof into two steps.

The solution to equation (1) is investigated numerically and \ldots

Table 1. Comparison of perturbation and numerical result with $\Lambda = \Gamma = 1$ and $\delta = 0.2$.

γ	$\theta_{max}(PS)$	$\theta_{max}(NS)$	Rel. error
0	0.6439	0.6635	1.94%
1	0.6458	0.6684	2.39%
2	0.6476	0.6737	3.87%
4	0.6513	0.6846	4.87%
5	0.6531	0.6904	5.40%

¹Corresponding author

²Supported by ICTP, grant number T4538

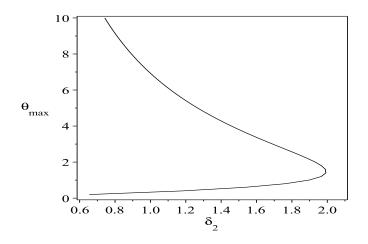


Fig. 1. Bifurcation plot for a variable viscosity when $\Gamma = \Lambda = 1$.

4. CONCLUDING REMARKS

Functional framework (see Evans and Alli [2])has been employed to generate analytical solutions of a model reaction diffusion equation. Table 1 demonstrates the comparison of solutions.

In Fig. 1, the critical value of the temperature is plotted against Newtonian parameter δ .

ACKNOWLEDGEMENTS

The author would like to thank the anonymous referee whose comments improved the original version of this manuscript.

NOMENCLATURE

 $\theta_{max\ cr}$ Non-dimensionless temperature of the model

 ϵ Activation Energy

REFERENCES

- [1] S. O. Kim, *Thermal stability of a reactive non-Newtonian flow in a sphere*, Int. Commu. Heat and Mass Transfer **60** (1) 70-81, 2009.
- [2] L. C. Evans and P. A. Alli, *Partial Differential Equations*, American Mathematical Society, Providence, Rhode Island, 1998.
- [3] H. A. Okoye, How to define reasonably weighted Sobolev spaces, Ph.D. thesis, University of Uyo, Uyo, Akwa Ibom State, Nigeria, 2009.

DEPARTMENT OF MATHEMATICS, OBAFEMI AWOLOWO UNIVERSITY, ILE - IFE, NIGERIA

E-mail address: bossnms@gmail.com

DEPARTMENT OF MATHEMATICAL SCIENCES, FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA

E-mail addresses: sspostdoc@yahoo.co.uk,firstdoc@oauife.edu.ng