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A SIMULATION STUDY ON KAPLAN MEIER

NON-PARAMETRIC SURVIVAL METHODS

K. A. ADELEKE

ABSTRACT. Exploring a time to event data, especially time
to failure (Death) assuming some data are censored and no tied
observations. This article discusses the use of Kaplan Meier non-
parametric approach on mortality data simulated over some pe-
riod specifically 15-weeks follow up. Series of simulations were
carried out and survival and hazards probabilities and Kaplan
Meier graphs were obtained for different simulations. Law of
large numbers as well as demographic stochasticity in the model
were observed. The findings suggested that as the number of
subjects at risk increases, the expected survival µ̂which is ap-
proximately 6 weeks and unconditional probability of survival
S(t) are almost decreasing at the same rate indicating more mor-
tality on daily basis while the hazards h(t) are tending towards
being constant
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1. INTRODUCTION

The actual computation of survival probability at a given time via
a risk set can be carried out using the Kaplan-Meier (KM) method.
This is a non-parametric or distribution free method which are quite
easy to understand and apply (Lee and Wang (2003)). They are
less efficient than parametric methods when survival time follows
a theoretical distribution and more efficient when no suitable the-
oretical distribution is known. Kaplan and Meier (1958), devel-
oped a method called Product Limit (PL) of estimating survivor-
ship function. This method is an alternative or special case of
life-table where each interval contains only one observation. There-
fore Kaplan Meier is based on individual survival time. In an-
alyzing survival data, two functions that are dependent on time
are of particular interest: the survival function and the hazard
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function. The survival function S(t) is defined as the probabil-
ity of surviving at least to time t. The hazard function h(t) is the
conditional probability of dying at time t having survived to that
time (Bewick et al, 2004). This method has been applied in series
of articles from different fields. Mark and Hills,(1988) applied a
Bayesian nonparametric approach to a (right) censored data prob-
lem. He extended the posterior distribution of percentiles given
by Hill (1968) to obtain predictive posterior probabilities for the
survival of one or more new patients, using data from other in-
dividuals having the same disease and given the same treatment.
Abeysekera and Sooriyarachchi (2009) worked on Cox Proportional
Hazards (PH) model but used Kaplan-Meier curves, a prelimi-
nary analysis on the survival data. Akram et al (2007), compared
the Kaplan-Meier method and Weibull model based on Anderson-
Darling (1954) Goodness of Fit test and this was applied to the
real life time data of cancer registry in Multan, Pakistan. He how-
ever concluded that there were different sex-superiority of survival
pattern among different groups of cancer patients. Interestingly,
Kaplan-Meier and Weibull model provided a very close estimate of
the survival function. Kaplan-Meier method was used to estimate
risk of childhood mortality by household environmental health haz-
ards, although, it is a descriptive procedure for examining the distri-
bution of time to an event (Olufunke A. Fayehun (2010)). A Kaplan
Meier method among others was used in analyzing data from stud-
ies where the response variable is the length of time taken to reach
a certain end-point, often death (Bewick et al, 2004). The rationale
and interpretation behind the use of Kaplan Meier, log-rank and
Cox models were explicitly discussed by (Clark et al, 2003), they
further suggested alternative methods that can be applied when
either the data or a given model is deficient. It is of my opinion
to work on this model, using simulation approach. Programs and
codes were generated to simulate random data which was used with
the help of excel package and simulation methods by Rubinstein and
Kroese (2008).

2. MATERIAL AND METHODS

A useful way of characterizing the survival in a homogeneous group
of individuals is to compute and graph the empirical survival func-
tion. If there are no censored observations in the sample, the
empirical survival function at time t is the ratio of survivors at
time t and the sample size n. This step function decreases by 1/n
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just after each observed failure (for ease of presentation we assume
no ties here). When dealing with censored data, a methodology
for handling this with convenience is required. Let T (survival
time,T ≥ 0 : t1, t2, . . . , tn) be the survival time of n randomly
sampled individual study Such that t1 ≤ t2 ≤ t3, · · · ,≤ tn are
of T1, T2, ..., Tn. Where S(t) ∼ b(n, p) and P = P (T ≥ t) then,
Sn(t) ∼ N(p, p(1− p)/n).

Where P =probability of success (survival) and 1− p =
probability of failure (death). Let F (t) denote the cumulativae
distribution of t with f(t) ≥ 0 for all t ≥ 0 and f(t) = 0 for all
t < 0.

Then, F(t)= [P (T ≤ t) =

∫ t

0

f(x)dx]

i.e probability of an individual surviving to a time t is

P (s) = P (T > t) = 1− F (t) =

∫ ∞
t

f(x)dx

Hence, P (s) = S(t)
Where

f(t) = lim
∆t→∞

P (t ≤ T < t+ ∆t)

∆t

dF (t)

dt
=
−dS(t)

dt
Now let Yi ∈ (Yi, τi) Where Yi = min(Oi, Ci) , Oi =Observed and
Ci =censored

Then,

τi =

{
1; if Oi≤Ci

0; otherwise

Recall
P (A ∩B) = P (B/A).P (A)

, We then introduce Kaplan Meier survival method as

Ŝ(tj) = Ŝ(t(j−1) ∗ (̂Pr)(T > tj/T ≥ tj)

Then S(t) = P (T > t) = T/Pi

We now relate this to a situation of a mortality case with time to
death ti ≤ t,
ni = number of observation
and di number of death.
The probability of failure or death is given as
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q =
(di)

(ni)
The conditional probability of survival

Pc = h(t) = 1− q = 1− di/ni =
(ni − di)

(ni)
Hence, an unconditional probability of survival is

Pu = Ŝ(t) =
∏

(ti ≤ t)P̂ci =
∏

(ti ≤ t) = (
(ni − di)

(ni)
)

Expected survival which is the mean survival time

µ̂ = E(Ŝ(t)) =

∫ ∞
0

Ŝ(t)dt

or
µ̂ =

∑
i=1

[Ŝ(t(i−1))(ti)− (t(i−1))]

where ti = ith time when t is ranked for uncensored observation.

3. RESULTS

We use the above models to generate a simulated data which at the
same time produced an estimates of the Survival probabilities as
shown in the tables below. We set an initial probability of survival
at 90 percents and probability of censored as well as loss to follow
up to 10 percent. Tables (1-6) show a summary of the simulations
output while Figures (1 - 6) show the Kaplan-Meier curves of the
survival function used in this study of time to death with limited
follow up of 15 weeks. We repeated each process at diferent sizes.
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Table 1: Estimates of survival probabilities with n = 200.

Twk R D C Pc Pu µ̂ α
1 200 17 23 -0.915 0.915 0.9 0.915
2 160 15 38 0.9063 0.8292 0.81 0.9106
3 107 6 16 0.9439 0.7827 0.729 0.9215
4 85 3 19 0.9647 0.7551 0.6561 0.9321
5 63 5 16 0.9206 0.6952 0.5905 0.9298
6 42 6 8 0.8571 0.5958 0.5314 0.9173
7 28 4 10 0.8571 0.5107 0.4783 0.9085
8 14 2 9 0.8571 0.4377 0.4305 0.9019
9 3 2 8 0.3333 0.1459 0.3874 0.8075
10 -7 3 4 1.4285 0.2084 0.3487 0.8549
11 -14 5 6 1.3571 0.2829 0.3138 0.8916
12 -25 4 12 1.16 0.3282 0.2824 0.9113
13 -41 2 9 1.0487 0.3442 0.2542 0.9212
14 -52 1 9 1.0192 0.3508 0.2288 0.9279
15 -62 1 7 1.0161 0.3565 0.2059 0.9335

Fig. 1. Kaplan Meier Survival curve when n = 200.
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Table 2: Estimates of survivals probabilities with n = 500.

Twk R D C Pc Pu µ̂ α
1 500 45 56 0.9100 0.9100 0.9000 0.9100
2 399 34 42 0.9147 0.8324 0.8100 0.9124
3 323 29 23 0.9102 0.7577 0.7290 0.9116
4 271 23 26 0.9151 0.6930 0.6561 0.9125
5 222 18 23 0.9189 0.6371 0.5905 0.9138
6 181 18 20 0.9005 0.5738 0.5314 0.9116
7 143 15 17 0.8951 0.5136 0.4783 0.9092
8 111 18 11 0.8378 0.4303 0.4305 0.8999
9 82 11 13 0.8658 0.3726 0.3874 0.8961
10 58 11 8 0.8103 0.3019 0.3487 0.8871
11 39 6 5 0.8461 0.2555 0.3138 0.8833
12 28 10 8 0.6428 0.1642 0.2824 0.8602
13 10 7 7 0.727 0.1194 0.2542 0.8492
14 -4 6 9 0.9999 0.2985 0.2287 0.9173
15 -19 9 8 1.0000 0.4399 0.2059 0.9467

Fig. 2. Kaplan Meier Survival curve when n = 500.
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Table 3. Estimates of survivals probabilities with n = 1000.

Twk R D C Pc Pu µ̂ α
1 1000 87 101 0.913 0.913 0.900 0.913
2 812 84 95 0.897 0.819 0.8100 0.905
3 633 79 103 0.875 0.716 0.7290 0.895
4 451 85 84 0.812 0.581 0.6561 0.873
5 282 84 99 0.702 0.408 0.5905 0.836
6 99 97 95 0.020 0.008 0.5314 0.449
7 -93 90 107 1.967 0.016 0.4783 0.555
8 -290 93 107 1.321 0.021 0.4305 0.619
9 -490 94 93 1.192 0.026 0.3874 0.665
10 -677 100 101 1.147 0.029 0.3487 0.703
11 -878 81 102 1.0923 0.032 0.3138 0.731
12 -1061 88 100 1.083 0.035 0.282 0.756
13 -1249 76 107 1.061 0.037 0.2542 0.776
14 -1432 97 81 1.068 0.039 0.2288 0.7935
15 -1610 90 101 1.0559 0.0415 0.2058 0.8088

Fig. 3. Kaplan Meier Survival curve when n = 1000.
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Table 4. Estimates of survivals probabilities with n = 5000.

Twk R D C Pc Pu µ̂ α
1 5000 462 504 0.907 0.907 0.9 0.907
2 4034 342 419 0.915 0.831 0.81 0.911
3 3273 290 345 0.911 0.757 0.729 0.911
4 2638 245 272 0.907 0.687 0.656 0.91
5 2121 183 230 0.914 0.627 0.591 0.911
6 1708 169 158 0.901 0.565 0.531 0.909
7 1381 115 127 0.917 0.518 0.478 0.91
8 1139 89 121 0.922 0.478 0.431 0.912
9 929 76 101 0.918 0.439 0.387 0.913
10 752 64 91 0.914 0.401 0.349 0.913
11 597 70 71 0.883 0.354 0.314 0.909
12 456 54 57 0.882 0.312 0.282 0.908
13 345 44 40 0.872 0.273 0.254 0.905
14 261 38 27 0.854 0.233 0.229 0.901
15 196 32 32 0.838 0.195 0.206 0.897

Fig. 4. Kaplan Meier Survival curve when n = 5000.
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Table 5. Estimates of survivals probabilities with n = 10000.

Twk R D C Pc Pu µ̂ α
1 10000 892 996 0.911 0.911 0.9 0.911
2 8112 703 801 0.913 0.832 0.81 0.913
3 6608 612 629 0.907‘ 0.755‘ 0.729 0.91
4 5367 472 553 0.912 0.688 0.656 0.911
5 4342 372 474 0.914 0.629 0.591 0.912
6 3496 326 363 0.907 0.571 0.531 0.911
7 2807 250 273 0.911 0.52 0.478 0.911
8 2284 201 248 0.912 0.474 0.43 0.911
9 1835 154 208 0.916 0.434 0.387 0.911
10 1473 126 146 0.914 0.397 0.349 0.912
11 1201 107 121 0.911 0.361 0.314 0.912
12 973 90 114 0.908 0.328 0.282 0.911
13 769 87 85 0.887 0.291 0.254 0.909
14 597 54 71 0.91 0.265 0.229 0.909
15 472 47 50 0.9 0.239 0.206 0.909

Fig. 5. Kaplan Meier Survival curve when n = 10000.
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Table 6. Estimates of survivals probabilities with n = 20000.

Twk R D C Pc Pu µ̂ α
1 20000 1751 2077 0.9124 0.9124 0.9 0.9124
2 16172 1483 1626 0.9083 0.8288 0.81 0.9103
3 13063 1251 1226 0.9042 0.7494 0.729 0.9083
4 10586 920 1062 0.9131 0.6843 0.6561 0.9095
5 8604 767 853 0.9109 0.6232 0.5904 0.9098
6 6984 628 720 0.9101 0.5672 0.5314 0.9098
7 5636 528 563 0.9063 0.5141 0.4783 0.90933
8 4545 426 459 0.9063 0.4659 0.4305 0.9089
9 3660 367 353 0.8997 0.4192 0.3874 0.9079
10 2940 278 297 0.9054 0.3796 0.3487 0.9077
11 2365 191 242 0.9192 0.3488 0.3138 0.9087
12 1932 185 196 0.9042 0.3155 0.2824 0.9083
13 1551 122 168 0.9213 0.2907 0.2542 0.9093
14 1261 115 129 0.9088 0.2642 0.2288 0.9093
15 1017 110 125 0.8918 0.2356 0.2059 0.9081

Fig. 6. Kaplan Meier Survival curve when n = 20000.
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4. CONCLUDING REMARKS

Kaplan-Meier survival analysis is a non parametric statistical method,
also known as the Kaplan-Meier product limit estimate or the Kaplan-
Meier survival curve, can be used to estimate survival. The method
has been applied broadly to measure how long it takes for any specific
event to occur. Such as the time it takes until death, the time until
a cancer patient recovers from a treatment, the time until an infection
appears, the time until pollination occurs, and so on. The estimated
survivor curves obtained are step functions however; and the graphs are
interpreted the same way. Note that the expected Pu is a straight line
because we set the weekly survival probability as a constant over time.
Sharp drops in the Pu line indicate more mortality on a given week, and
shallow drops in a line indicate fewer deaths occurring during a particu-
lar interval. We can see that as the number of subjects at risk increases
(i.e sample size), the expected survival µ̂ and unconditional probability

of survival (Ŝ(t)) are almost dropping at the same rate indicating more
mortality weekly. The estimated median survival time which is a better
measure of central tendency for skewed data than arithmetic mean, and
this is at t(50), i.e at S(t(50)) = 0.5 which is the time beyond which 50
percents of individuals under study are expected to survive or equiva-
lently, the time within which 50 percents of the patients are expected
to die. Going through all the graphs, we discovered that expected me-
dian survival time is approximately 6 weeks. Fig (2.0) is a scenario in
which mortality rate increases from week 1 till 13th week and is almost
constant for the remaining weeks under study, with an expected median
survival time of six (6) weeks. Fig (3.0) is a worst scenario in which the
mortality rate increases via a sharp drop in the survival probability to-
wards zero and this remains constant for the rest of the study period, the
expected median survival time is also six (6) weeks. Fig 4.0 to 6.0 where
we have 5000, 10,000 and 20,000 samples of simulated trials, satisfy
the law of large numbers and there is demographic stochasticity in the
model in which the conditional probability of survival h(t) is constant

while the unconditional and expected probability of survival (Ŝ(t))and
µ̂ are decreasing almost at the same rate indicating that the mortality
rates obtained for such populations are constant over the study period
as simulation sizes increases and expected median survival time remain
the same as six weeks.
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NOMENCLATURE

T Event Time in weeks
µ̂ Expected Survival Probability
α Actual Survival Probability
Pu Unconditional Probability
Pc Conditional Probability
R Number at Risk
D Number of death
C Number Censored
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