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A THREE-STEP SIMPSON’S TYPE
EXPONENTIALLY-FITTED BACKWARD DIFFERENCE

METHOD FOR THE NUMERICAL SOLUTION OF FIRST
ORDER ORDINARY DIFFERENTIAL EQUATIONS

O. E. FANIYI 1, M. I. MODEBEI2, O. O. OLAIYA 3

ABSTRACT. In this paper, a class of exponential fitting backward
difference method (EFBDM) is derived for numerically solving gen-
eral first order ordinary differential equations. This class of method
is from the linear multistep method (LMM) derived via the tech-
nique of collocation. The power series polynomial used as basis
function is fitted with an exponential function term. This class of
EFBDM is derived for the step number k=3. The method satisfies
the basic features of numerical scheme which includes consistency
and zero-stability. The convergence of the method is also estab-
lished. This class of 3-step method is compared to already existing
methods in literature to establish its efficiency in terms of global
errors and they compare favourably with the methods cited.

1. INTRODUCTION

In this work, we consider the first order Initial Value Problem (IVP) of
the form

y′ = f (x,y), a < x < b,
y(a) = α0

}
(1.1)

where α0 is an arbitrary finite real constant, x ∈ (a,b), f ∈ C[a,b], is a
continuous function defined on the interval (a,b).
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Several physical processes in science and engineering can be mod-
eled in the form (1.1) which could be non-stiff, stiff or singular in na-
ture. Specifically, we consider non-stiff and singular IVPs that typically
originate from models in Mathematical Biology triggered by a random
walk of organisms, such as bacterial in the presence of a chemical re-
sulting in interesting spatial patterns (see Tyson et al. [18]). We note
that the solutions of the non-stiff or singular ODEs may become un-
bounded in finite time and such a phenomenon is often called blow-up,
while the finite time is called the blow-up time (see [19]-[21]).

The idea behind exponential fitting (EF) is to derive numerical meth-
ods that are better suited for oscillatory and stiff problems. Classical
method with the basis 1,x,x2, . . . ,xk perform best when the solution is a
polynomial, as a k-step Adams-Bashforth method can even find a poly-
nomial solution of degree k without errors and up to machine accuracy.
The idea of using exponentially fitted formulae for numerically solving
differential equations came from Liniger and Willoughby [22], where
integration formulae containing free parameters were derived and these
parameters were chosen so that the function exp(w) with w real, sat-
isfied the integration formulae. This was tested on linear and used on
multistep method for k = 1. From this, many others have developed
exponentially-fitted method capable of handling many types of prob-
lems especially the nonlinear and oscillatory ones.

To obtain an exponentially fitted variant method, a few of the highest-
order monomials are replaced by exponentials. The most general fitting
space is of the form {1,x,x2, . . . ,xk,ew0x,ew1x, . . . ,ewpx} which solely
depend on the parameters w0, . . . ,wp multiplied by the step-size h, see
Ixaru and Paternoster [7], Ixaru and Vanden [8]. Particularly, the pa-
rameters w0, . . . ,wp can all be given different values. It can however be
interesting to specify a relation between the different parameters. Re-
gardless of the form of the fitting space, it is usually imposed that the
parameter value(s) are either real or imaginary, (see [11]-[16]). Here,
the exponential fitting space of the form {1,x,x2,x3,ewx} is used for the
derivation of the exponentially fitted method.

2. EXISTENCE AND UNIQUENESS OF FIRST ORDER ODES

The following theorem guarantees the existence of at least one solution
of (1.1).

2.1 Existence: Suppose that f (x,y(x)) is a continuous function de-
fined in some region

R = {(x,y(x)) : x0 −δ < x < x0 +δ , y0 − ε < y < y0 + ε}
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containing the point (x0,y0). Then there exists a number δ1 < δ such
that a solution y = f (x) of (1.1) is defined for x0 −δ1 < x < x0 +δ1,

2.2 Uniqueness: Suppose that both f (x,y(x)) and ∂ f (x,y(x))
∂y are con-

tinuous functions defined on the region

R = {(x,y(x)) : x0 −δ < x < x0 +δ , y0 − ε < y < y0 + ε}

Then there exists a number δ2 < δ1 such that the solution y = f (x) of
(1.1) whose existence was guaranteed by the existence theorem, has a
unique solution for x0 −δ2 < x < x0 +δ2, see Brugnano and Trigiante,
[23]-[24].

3. DEVELOPMENT OF THE METHOD

For a 3-step method, we consider the interval [xn,xn+3], where xn+i =
xn + ih, h = x j − x j−1, for solving the problem in (1.1) on the interval
[a, b]. We consider the approximation of its solution y(x) by a polyno-
mial u(x) given by

y(x)≈ u(x) =
3

∑
i=0

aixi +a4ewx (3.1)

whose derivative is given as

y′(x)≈ u′(x) =
3

∑
i=1

i aixi−1 +wa4ewx (3.2)

with the ai ∈ R real unknown parameters to be determined, and the
parameter w will be real constant. Imposing appropriate interpolation
conditions to u(x) at xn and collocation condition u′(x) at the points
xn, . . . ,xn+3, leads to the system of 4 equations:
u(xn) = yn, u′(xn + ih) = u′n+i = fn+i; i = 0(1)(3) for the determination
of ai’s, i = 0(1)(3). Solving the system and obtaining the constants
a0,a1,a2,a3, which are then substituted into (3.1). The formula of the
form

u(x) = α0yn +
3

∑
i=0

β (w;h) fn+i (3.3)

is derived, where α0 = 1, β is a function depending on w and h. Eval-
uating (3.3) at the point xn+i, i = 0(1)3, the following 3-step EFBDM
are obtained:
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yn+1 = yn +η1
(
(12−16e2hwhw+5e3hwhw+ ehw(−12+23hw)) fn +(−36+36ehw −23hw−21e2hwhw+8e3hwhw) fn+1

−(e3hwhw+ ehw(36−21hw)−4(9+4hw)) fn+2 +(−12−5hw+ e2hwhw+ ehw(12−8hw)) fn+3
)

yn+2 = yn +η2
(
(3+7ehwhw+ e3hwhw− e2hw(3+2hw)) fn +(−9−7hw+4e3hwhw+ e2hw(9−15hw)) fn+1

+(9−9e2hw +2hw+15ehwhw+ e3hwhw) fn+2 +(−3+3e2hw −hw−4ehwhw− e2hwhw) fn+3
)

yn+3 = yn +η1
(
9(−4+4e3hw −3hw) fn − (9e2hwhw) fn+1 +(9(4+9ehwhw+ e3hw(−4+3hw))) fn+2

+3(−4+4e3hw −3hw−9e2hwhw) fn+3
)

(3.4)

η1 =
1

12w(ehw+1)3 , η2 =
1

3w(ehw+1)
3
w

,

3.1. Analysis of the Method.
Local truncation error (LTE) and order

The linear difference operators associated with the formulas in (3.4), is
given as

Lk[y(x); h]≡ y(x+nh)− y(x)−

[
3

∑
i=1

βi(w;h)y′(x+ ih)

]
(3.5)

The local truncation error of each of the formulae in (3.4) is the amount
by which the exact solution of the ODEs fails to satisfy the correspond-
ing difference operator. Thus, if we consider the exact solution y(x) in
(3.5), after expanding in Taylor series around x we get that each of the
local truncation errors of the form

L [y(x); h] =Cp+1hp+1y(p+1)(x)+O(hp+2) (3.6)

where the constants Ci for i = 0(1)p varnishes. The Cp+1 is called the
principal error constant and p is called the order of the formula. In this
case, for all the formulae in (3.4), the form of (3.6) are given as

Cp+1 =


− 95

288

(
wy(5)(x)− y(6)(x)

)
h6 +O(h)7

−14
45

(
wy(5)[x]− y(6)(x)

)
h6 +O(h)7

− 51
160

(
wy(5)[x]− y(6)(x)

)
h6 +O(h)7


Conclusively, the order p = 5.

3.2. Zero-stability.
Definition 3.2.1: The first characteristic polynomial of k-step linear

multistep method is the degree-k polynomial

ρ(z) =
k

∑
j=0

α jz j (3.7)

Definition 3.2.2: A polynomial is said to satisfy the root condition if
all its roots lie within or on the unit circle, with those on the boundary
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being simple. In other words, all roots satisfy |z| ≤ 1 and any that satisfy
|z|= 1 are simple. A polynomial satisfies the strict root condition if all
its roots lie inside the unit circle; that is, |r| < 1, Amodio and Mazzia,
[1]. 1

Definition 3.2.3: A Linear Multistep Method is said to be zero-stable
if its first characteristic polynomial ρ(z) satisfies the root condition.

The methods in (3.4) if put the block form can be written as

A0Yr+n = A1Yr +hB(h;w)Fr+n (3.8)

The zero-stability is concerned with the stability of the difference sys-
tem (3.8) as h → 0. Thus, as h → 0, (3.8) becomes

A0Yr+n = A1Yr (3.9)

where

Yr+n = (yn+1,yn+2,yn+3)
T , Yr = (yn,yn−1,yn−2)

T

A0 is a 3 by 3 identity matrix written as


1 0 0
0 1 0
0 0 1

 and

A1 =


1 0 0
1 0 0
1 0 0

 . Hence we sought for the characteristic polyno-

mial

ρ(z) = |zA0 −A1|= 0 (3.10)

such that the roots ρ(z) = z2(z− 1) = 0, z = 1,0,0. Consequently, the
method is zero-stable, since the roots of the characteristic polynomial
are all zero except one, whose modulus is one (see Dahlquist [3], Lam-
bert [10]). For convergence, we state the following theorem.

3.3. Convergence.
Theorem 3.3.1 Henrici [5]. A linear multistep method is said to be

convergent if it is consistent (with order p ≥ 1) and it is zero-stable.

By the above analysis, the method has order p > 1, and is zero-stable.
Thus, by the above theorem, the method is convergent.

1We say that λ is a simple root of ρ(z) if λ − z is a factor of ρ(z).
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3.4. Implementation of EFBDM.
The block method is implemented as follows: Using method (3.8),

n = 0, solve for the values of y1 with the aid of Newton’s Method on
the sub-interval [x0,x1], as y0 is known from the IVP (1.1). Next, for
n = 1, the values of y2 is obtained over the sub-interval [x1,x2], as y1
is known from the previous sub-interval. The process is continued for
n = 2, . . . ,N − 1 to obtain the numerical solution of (1.1) on the sub-
intervals [x2,x3], [x3,x4], . . . , [xN−1,xN ]. It should also be noted that the
frequency w is determined by the exponential term in the exact solution.
Other values can be used in a case where the exact solution is unknown.
The details of the implementation is given in Algorithm below.

Algorithm 1 Block Algorithm for EFBDM

1 begin procedureENTER Partitions (a,b,N,h,variables)
2 For xn = xn−1 +h, n = 1, . . . ,N, h = b−a

N
3 Generate block system
4 Solve [sysytem, variables]
5 Obtain yn
6 end procedure

4. NUMERICAL EXAMPLES

In this section, we give numerical examples to illustrate the accuracy
of the method. Let y(xn) be the exact solution and yn the approximate
solution on the partition πN , we find the absolute errors of the approxi-
mate solution as |y(xn)− yn|

Problem 1. We consider the linear IVP, [2].{
y′2, 0 ≤ x ≤ 1
y(0) = 1 (4.1)

The analytic solution is given by y(x) =−2−2x− x2 +3ex;. With N =
10, w =−1.

From the above table, our method become superior over the method
in [2].

Problem 2. We consider the singular IVP discussed in [9].{
y′2 = 1, 0 ≤ x ≤ 1
y(0) = 1 (4.2)

The analytic solution is given by y(x) = tan
(
x+ π

4

)
. With N = 20.



A THREE-STEP SIMPSON’S TYPE EXPONENTIALLY-FITTED ... 279

TABLE 1. Comparison of absolute errors obtained in
different methods for Example 1.

x yapp yex EFBDM Method in [2]
0.1 1.105512754 1.105512754 1.77E-15 2.45E-5
0.2 1.224208274 1.224208274 1.73E-14 2.71E-5
0.3 1.359576422 1.359576422 7.11E-15 2.99E-5
0.4 1.515474092 1.515474092 2.66E-14 3.31E-5
0.5 1.696163812 1.696163812 4.79E-14 3.65E-5
0.6 1.906356401 1.906356401 1.51E-14 4.04E-5
0.7 2.151258122 2.151258122 7.11E-15 4.46E-5
0.8 2.436622785 2.436622785 3.91E-14 4.93E-5
0.9 2.768809333 2.768809333 6.75E-14 5.45E-5
1.0 3.154845485 3.154845485 8.17E-14 6.03E-5

TABLE 2. Comparison of absolute errors for Example
2.

x EFBDM PCM SSM RKM
0.0 0 0.00 0.00 0.00
0.1 6.71(-10) 1.06(-6) 1.03(-6) 2.15(-8)
0.2 7.88(-9) 2.71(-6) 2.45(-6) 2.80(-8)
0.3 1.63(-8) 5.37(-6) 4.68(-6) 5.21(-7)
0.4 2.09(-8) 1.03(-5) 8.71(-6) 3.63(-6)
0.5 2.65(-8) 2.13(-5) 1.75(-5) 2.60(-5)
0.6 2.77(-8) 5.54(-5) 4.41(-5) 2.91(-4)
0.7 1.56(-8) 2.80(-4) 2.14(-4) 1.34(-2)
0.8 3.05(-8) 1.02(-2) 7.37(-3) 1.39(-3)
0.9 1.87(-7) 1.58(-4) 1.18(-4) ∞

1.0 7.46(-7) 4.43(-5) 3.22(-5) ∞

NSDM is nonlinear one-step second derivative method with a variable
step-size implementation based on continued fractions for the numerical
solution of singular initial value problems (IVPs) in [9]. The method
was implemented in Predictor-Corrector Mode (PCM) and Self-Starting
Mode (SSM). Where RKM is the Runge-Kutta Method for the same
problem. It can be clearly seen that our method compares favourably.
This shows the superiority of our method.

Problem 3. We consider a linear system of IVP, [17].(
y′1(x)
y′2(x)

)
=

(
−2y1(x)+ y2(x)

998y1(x)−999y2(x)

)
+

(
2sin(x)

999(cos(x)− sin(x))

)
,

(
y1(0)
y2(0)

)
=

(
2
3

)
(4.3)
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TABLE 3. EFBDM absolute errors for Example 3.

x y1 Approx y1 Exact y2 Approx y2 Exact Error 1 Error 2
5.0 -0.9454483808 -0.9454483808 0.2971380792 0.2971380792 2.15E-10 2.17E-10

50.0 -0.26237485419 -0.2623755419 0.9649660279 0.9649660279 4.92E-10 4.97E-10

TABLE 4. Errors for Example 3 in [17]

x Error 1 of Method 1 Error 2 of Method 1 Error 1 of Method 2 Error 2 of Method 2
5.0 1.27E-3 1.35E-6 1.19E-3 1.26E-6

50.0 3.70E-5 1.10E-7 3.27E-5 1.02E-7

TABLE 5. Maximum errors obtained for Example 4.

Methods Max{y1, y2}
EFBDM 9.21E-20

BLOCK10SIMP 1.00E-14
BLOCK10 1.00E-15

BLOCK2SIMP 1.00E-6
BLOCK2 1.00E-6

The exact solution is(
y1(x)
y2(x)

)
=

(
2e−x + sin(x)
2e−x − cos(x)

)
(4.4)

Here, w = 1.
We remark that EFBDM is very competitive with both methods dis-

cussed in [17]. Hence, this shows the superiority of our methods in
terms of the errors obtained.

Problem 4. Consider the following system of first order IVP discussed
in [6].

y′1 =−1002y1 +1000y2
2, y1(0) = 1

y′2(x) = y1 − y2(1+ y2), y2(0) = 1 (4.5)

The exact solution are; y1(x) = e−2x, y2(x) = e−x, w = 2.
The above Table 5 shows the maximum error of y1 and y2, that is,

Max{y1, y2}.
Here, in [6], BLOCK2 is the 2-step block method, BLOCK2SIMP is the
simplest 2-step block method, BLOCK10 is the 10-step block method,
BLOCK10SIMP is the simplest 10-step block method. The proposed
method performed better than the methods compared with in [6].
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TABLE 6. Absolute errors for Example 5.

h Method 1 in [25] Method 2 in [25] Method 3 in [25] EFBDM
10−10 5.20713×10−10 1.02940×10−12 5.06390×10−12 1.24575×10−16

10−11 1.67741×10−10 2.72390×10−12 4.40500×10−13 3.42518×10−17

10−12 5.33553×10−11 1.16940×10−12 2.01000×10−14 4.15785×10−17

10−13 1.68998×10−11 3.96500×10−13 1.40000×10−15 1.27154×10−18

Problem 5. Consider a first order nonlinear singular IVP solved in [6].

y′ =− y2
√

x , y(0) = 1, 0 < x ≤ 1 (4.6)

The exact solution is given by y(x) = 1
1+2

√
x . We thus solve the initial

value problem (4.6) by adopting the same value for the step-size h =
1/12000000 as in [6].

Table 6 shows, that for very small h, EFBDM produced excellent re-
sults than methods proposed in [25]. It was keenly observed that, even
as x is very close to singular 0, the results are not affected. Hence, the
proposed EFBDM solved the problem and the results obtained are more
superior in terms of the error obtained when compared to the errors ob-
tained in [25].

To show the accuracy of the EFBDM, we solve Susceptible, Exposed,
Infective and Recovery (SEIR) tuberculosis disease model in [26] with
EFBDM and compare graphically with Runge-Kutta method of order 4.

Problem 6. Consider the SEIR tuberculosis disease model discussed in
[26].

ds
dt = µ −µs−β si
de
dt = β si− (µ + ε)e
di
dt = εe− (µ + γ)i
dr
dt = γi−µr

(4.7)

where s = S
N , e = E

N , i = I
N , and r = R

N , represents the fractions of the
susceptible S, exposed E, infective I and recovery R classes in the popu-
lation respectively, with initial conditions s(0) = s0, e(0) = e0, i(0) = i0,
r(0) = r0. The following are the parameters used for numerical simu-
lation: s(0) = 5000, e(0) = 1000, i(0) = 150, r(0) = 50, β = 0.0468,
ε = 0.1196, γ = 0.1472, µ = 0.0006. The figures below show the com-
parison of EFBDM and the fourth order Runge-Kutta method.

The proposed method was used with appropriate step-size h depend-
ing on the method being compared with and the frequency w = 1. The
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performance of the EFBDM has been demonstrated to outperform other
methods compared with in the cited literature evidently from Problems
1 through 5.

5. CONCLUSION

An Exponentially-fitted Backward Difference Formula (EFBDM) based
on continuous linear multistep method is proposed and applied to solve
first order linear and non linear IVPs in ordinary differential equations.
It can be seen that the method is very easy to derive and less ambiguous.
It can be applied to solve a wide range of first order ODEs as seen in
the numerical examples. The method shows a very high accuracy when
compared to the exact solution and existing methods in the literature.
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